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A layer of a viscous, weightless capillary fluid located on the lateral inside surface 
of a cylindrical vessel rotating at a constant angular velocity can be in a state of equi- 
librium relative to the cylinder - rotating together with the latter as a rigid body. If 
the contact angle at the ends of the cylindrical vessel is equal to ~/2, then the layer 
may be in equilibrium with the free inside surface (having the form of a circular cylinder). 
Along with this trivial equilibrium state, it is also possible to obtain equilibrium con- 
figurations in which the free surface of the layer is symmetrical relative to the axis of ro- 
tation and is periodic in the direction of this axis. The goal of the present study is to 
examine such nontrivial axisymmetric states of relative equilibrium and analyze their stabil- 
ity. 

Pukhnachev [i] examined the problem of branching of the state of rigid-body rotation of 
a circular cylindrical layer with a free internal and solid external surface. Critical Weber 
numbers corresponding to the branching of a state of rigid-body rotation with an axisymmetric 
periodic free surface were found in this investigation. 

In our study, we examine all of the equilibrium configurations of a weightless rotating 
layer with an axisymmetric periodic free boundary. Here, we substantiate the branching condi- 
tions obtained in [i] [see Eq. (2.7)]. We also show that there exists a family of nontrivial 
axisymmetric states which do not branch from the circular cylindrical state. 

Joseph and Preziosi [2] analytically and experimentally studied the problem of axisym- 
metric equilibrium configurations of a two-layer liquid filling a rotating vessel in the form 
of a cylindrical layer. In essence, Badratinova [3] studied the case when the liquid at the 
external boundary of the vessel is less dense than the internal fluid. Nontrivial axisym- 
metric modes of equilibrium of a rotating liquid column were examined in this investigation. 
Badratinova [3] reported critical values of parameters at which their branching could be ex- 
pected to occur. Branching three-dimensional equilibrium configurations were observed in the 
experiments in [2]. The situation examined in the present study is another special case of 
a two-layer liquid in which the density of the internal liquid is zero or less than the den- 
sity of the external liquid. In contrast to [2], we consider the case of a cylindrical vessel 
which is finite along the axis of rotation. 

The studies [2, 4] validated a principle in accordance with which stable configurations 
of a two-layer liquid are associated with rigid-body motion minimizing a certain surface 
potential on the set of possible interfaces. However, the principle stated in [2] was not 
substantiated with sufficient rigor [the theorem which follows Eq. (2.39) in this study is 
erroneous]. The potential introduced in [2] is the "potential energy of the system in a ro- 
tating coordinate system." A similar potential was introduced earlier (see [5], p. 125) to 
study the stability of the equilibrium of rotating fluid. Validation of the principle of a 
potential-energy minimum for fluid-dynamics problems was begun in [6], where the author de- 
termined the stability of the equilibrium state of a liquid with a free boundary for cases in 
which this principle is valid. A similar determination of stability was made in [7, 8] for 
a viscous capillary liquid. The authors proved the validity of the Lagrange theorem: the 
equilibrium state of a liquid for which the second variation of potential energy is positive 
is stable. Studying the linear problem of the stability of the equilibrium of a viscous 
capillary liquid partially filling a vessel, the authors of [9] proved the validity of the 
inverse Lagrange theorem: if the second variation of potential energy can take negative val- 
ues, then the equilibrium is unstable. 

In the present investigation, stability is studied on the basis of an analogy with the 
Lagrange theorem and its inverse. In the study of stability in [2], the potential minimum 
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was sought on a one-parameter family of equilibrium axisymmetric surfaces whose period de- 
pended on the characterizing parameter. Such a family is not allowable in a finite cylindri- 
cal vessel. The length of the latter should be a multiple of the wavelength of the distur- 
bance. Thus, we cannot use the results obtained in [2] regarding the instability of non- 
trivial axisymmetric equilibrium configurations in an infinite cylindrical layer. 

According to [2], the state of equilibrium with a cylindrical interface in an infinite 
vessel will always be unstable if the heavy liquid is located on the inside (is the rotating 
liquid column). When the heavy liquid is on the outside (is an infinite circular cylindrical 
layer), it is stable only at Weber numbers greater than four. The first statement is sup- 
ported by the result obtained in [i0], but the latter contradicts the well-known fact that 
an infinite layer is stable relative to random disturbances at Weber numbers greater than 
unity (this result follows from [i0, 8] and [5, p. 165]). It should be noted that the equi- 
librium configurations observed in the experiments in [2] at Weber numbers less than four 
were not circular cylindrical. It may be that, of the two stable states, the state realized 
in an experiment is that which has the lower potential energy. 

The behavior of a two-layer liquid in a gravitational field inside a rotating horizontal 
cylinder was studied experimentally in [ii]. The authors examined two-layer systems in which 
the internal liquid was less dense than the external liquid. Experiments were also conducted 
for liquid partially filling a vessel and located on its lateral inside surface. As was 
shown in [2] and in our study, in the case of a weightless liquid layer, all of the equi- 
librium configurations are unstable in the presence of a noncylindrical free surface that does 
not intersect the axis of rotation. The situation is different for a liquid layer in a gravi- 
tational field. The experimental results in [Ii] indicate that secondary periodic (three- 
dimensional) flows are stable. 

i. Equations for Equilibrium Modes. A circular cylindrical vessel of radius R and 
length L is rotated about its own axis at a constant angular velocity ~. The vessel is par- 
tially filled With a weightless viscous fluid having a volume equal to ~(R 2 - R~)L. The 
contact angle is ~/2. One possible state of the fluid is rigid-body rotation with the angular 
velocity ~ and a cylindrical free surface located the distance R 0 from the axis of rotation. 

Examining a fluid in a state of equilibrium relative to a rotating cylinder, we pose the 
problem of finding all possible axisymmetric modes of the free surface that will not inter- 
sect the lateral surface of the cylinder and will project uniquely on this surface. Such 
modes are found from an analog of the Laplace equation which accounts for centrifugal forces 
in the balance of forces on the equilibrium free surface. We introduce dimensionless vari- 
ables for our study, having chosen R0, ~R0, p~2R~ as the scales of length, velocity, and 
pressure (p is the density of the fluid). Let ~, a, and z be a cylindrical coordinate system 
rotating with the angular velocity ~. The z axis of this system coincides with the axis of 
the cylinder. The ends of the cylindrical vessel are located in the planes z = 0, z = s = 
L/R 0. First we will examine the axis~nnmetric equilibrium modes for which the distance from 
the axis of rotation increases monotonically with motion along the free surface in the plane 

= const from the end z = 0 to the end z = s The equation of these modes can be represented 
in the form z = Z(N), where the function Z(N) satisfies the equilibrium equation [5] 

k(l+z,2)~/~ =Tn---C. ( i . i )  

Here and below, primes denote differentiation with respect to ~; ~ = p~2R~/o is the Weber 
number (o is surface tension); C is an unknown constant; H is the mean curvature of the sur- 
face Z(D). The sign in front of the curvature is chosen with allowance for the above assump- 
tion that Z'(D) > O. 

The solution of differential equation (i.i) must satisfy the boundary conditions 

and the integral relations 

z' (no)= z'(~,)= (1.2) 

ll~Z'd~l = l, J' Z '  d~ = l, ( 1 . 3 )  

w h i c h ,  r e s p e c t i v e l y ,  e x p r e s s  t h a t  t h e  c o n t a c t  a n g l e  i s  e q u a l  t o  v/2, t h e  vo lume  o f  t h e  f l u i d  
i s  e q u a l  t o  v(R 2 - R~)L,  and t h e  l e n g t h  o f  t h e  c y l i n d r i c a l  v e s s e l  i s  e q u a l  t o  L. I n  Eqs .  
( 1 . 2 )  and ( 1 . 3 ) ,  ~0 and n l  a r e  t h e  l a r g e s t  and s m a l l e s t  v a l u e s  f o u n d  f o r  t h e  d i s t a n c e  o f  t h e  
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equilibrium surface from the axis of rotation: q0 = Nlz=0, ql = Nlz=~- For each solution 
of problem (i.I)-(1.3), the condition that the lateral surface of the cylinder not be inter- 

sected imposes the following limitation on the radius R: 

R > ~tR0. (1.4) 

After integration, Eq. (i.i) gives 

(~ +z,D~:, -~- -f ~ --CI (1.5) 

(C I is an unknown constant). 

The relative equilibrium modes for which the distance from the axis of rotation decreases 
monotonically with motion along a meridional arc from the bottom to the top end are deter- 
mined by the equation z = s - Z(q). We will refer to a relative equilibrium mode as simple 
if the free surface of the liquid projects uniquely on the planes of the ends of the vessel. 
Equations (1.2)-(1.5) establish a two-parameter (dependent on the parameters $, Z) family of 
simple axisymmetric equilibrium modes accurate to within the transformation ~ = Z - z. 

Problem (1.2)-(1.5) is invariant relative to mirror reflection in the plane z = s Thus, 
it can also be concluded that Eqs. (1.2)-(1.5) establish a two-parameter family of periodic 
axisymmetric modes of relative equilibrium. The dimensionless length of the vessel should be 
a multiple of the "half-period" s with the contact angle v/2. If it is not a multiple of s 
for the given $ and s then the periodic solution will be the solution of the problem of equi- 
librium in the vessel for another contact angle. 

2. Representation of the Solution in Formulas of Integration. Let us study a two-param- 
eter family of simple equilibrium modes. We choose the following as independent parameters 

0=%I~,,  b =  ~ (~ + 0 ) ~  (2 .1 )  
8 

P a s s i n g  t o  t h e  l i m i t s  a t  ~ § q0 and  q § q l  i n  ( ] . . 5 )  and c o n s i d e r i n g  c o n d i t i o n s  ( i . 2 ) ,  
we o b t a i n  e x p r e s s i o n s  f o r  t h e  c o n s t a n t s  C and  C~ i n  t e r m s  o f  t h e  p a r a m e t e r s  O, b ,  and  qz :  

C = 2 1 t - - b ( 1 + 0 2 ) ] / [ ~ , ( t + 0 ) ] ,  C~=O~,( t+bO)/ ( t+O) .  ( 2 . 2 )  

We now c h a n g e  o v e r  t o  t h e  p a r a m e t e r s  b ,  e and  t h e  new v a r i a b l e s  x = z / q z ,  r = N/qz  i n  p r o b l e m  
( 1 . 2 ) - ( 1 . 5 ) .  A f t e r  i n t e g r a t i o n ,  we f i n d  f r o m  ( 1 . 5 )  t h a t  

i u(~, O, b ) ~  x :  X(r, O, b) = ]/(-]----7) ( T - - ~ '  ( 2 . 3 )  
0 

where u represents the function 

u (r, O, b) = 

We use conditions (1.3) to find 

~0- + o - b (~ - r 2) (~2 _ o~.) 

~ ( i  + r) (r + O) [1 + 2b (r 2 + O) -- b ~ (1 -- r 2) (r 2 -  02)] ( 2 . 4 )  

t h e  d e p e n d e n c e  o f  N1 and  s on 8 and  b :  

u ('r O, b) d'v "~2 u (~, O, b) d~i ( 2 . 5 )  

u(~, e, b) dT "~(~, e, b)d~ ( 2 . 6 )  
z = F (0, b) = V(~ - ,) (~ - 0) ]/g- ~) (~- 0) " 

The value of e belongs to the interval (0, i) for each equilibrium mode. If e = 0, then 

the boundary condition on the end z = 0 is violated ~ = 0 . The equilibrium surface 
I' 0 

touches the surface of this end. In a special case (b = e = 0), it has the form of a hemi- 
sphere of the radius s = /~-~. At e + i, the equilibrium modes approach a circular cylin- 
drical surface~ Let us now change over to the new variable of integration t in Eqs. (2.5)- 
(2.6) by means of the formula ~ = (i + e)/2 + (i - e)t/2 and let us set 8 = 8* = I in these 
equations. We obtain nl ~ h~ = i, s = ~//i + 4b. From this, with allowance for (2.1), we 
obtain the formula 

~* = - - 4 b *  = i - -  ( n/I)  2, ( 2 . 7  ) 
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coinciding with the condition found in [i] for the branching of an equilibrium state with a 
circular cylindrical surface. 

As regards its physical meaning, the parameter ~ > 0. We can thus conclude the following 
from (2.7). Simple axisymmetric modes of relative equilibrium branching from the circular 
cylindrical mode exist only at s > ~. Figure 1 shows the dependence of relative length s on 
the parameter O at certain values of b. It is apparent that simple axisymmetric equilibrium 
surfaces also exist at Jl.5 < s < ~ but do not branch from the circular cylindrical surface. 
With fixed ~ e (/1.5, v), such axisymmetric solutions exist beginning with the value 8 = 0 
(at which the equilibrium surface intersects the rotation axis) and ending with the value 
80 (corresponding to b = 0). At b = 0, $ = 0, i.e., the cylindrical vessel is at rest. 

It can be shown that the radicand in (2.4) is positive at all r e [O, i] only if the 
following inequality is satisfied 

b > - - 0 , 5 ( t + 0 )  -I .  ( 2 . 8 )  

At  b = - 0 . 5 ( 1  + O) - 1 ,  t h e  e x p r e s s i o n  i n  s q u a r e  b r a c k e t s  i n  ( 2 . 4 )  i s  e q u a l  t o  (1  - r 2 ) ( 4  + 
40 - r 2 + 0 2 ) / 4 ( 1  + 8 ) 2 .  ~ The  i n t e g r a n d  i n  ( 2 . 3 )  i s  t h u s  p r o p o r t i o n a l  t o  (1 - x ) - l  A t  
r § 1,  i n t e g r a l  ( 2 . 3 )  d i v e r g e s  and  t h e  " h a l f - p e r i o d "  s § ~ .  

It follows from (2.8) that the minimum value of b at which simple equilibrium modes 
exist is attained at O = 0 and is equal to -0.5. Thus, a "degenerate" solution for which 
contacting gas bubbles are formed in the fluid in a state of relative equilibrium exists 
up to the value ~ = ~. As can be seen from Fig. i, such solutions do not exist when ~ < /1.5. 

Figure 2 shows the region D corresponding to the existence of simple axisymmetric 
equilibrium modes in the space of the initial parameters s 6- Curves ~0($) and g = ZI($) = 
7/(1 - 6) correspond to O = 0 and i. Curve s has the vertical asymptote ~ = 4. The 
region D is enclosed by curves s ~i($). It is evident from Fig. 2 that nontrivial 
modes exist at $ e (0, 4). 

Let a simple axisymmetric mode be characterized by the parameters $ and Z, for which 
the point (~, s e D. For this mode to be the solution of the problem of equilibrium in a 
cylinder of length s 0 and radius R, inequality (1.4) must be satisfied. Numerical calcula- 
tions showed that (1.4) is satisfied throughout the region D at R > R, ~ 1.36R 0. In the 
next paragraph, we make the assumption that the radius of the cylinder R satisfies inequality 
(1.4). We thus analyze the stability of all modes from region D. 

We will prove the following hypothesis. There are no periodic solutions to the problem 
of relative equilibrium in a cylindrical vessel for which a section of the free surface cor- 
responding to one half-period projects uniquely on the plane z = const. Let the angular 
velocity ~ (or ~ = p~2R~/o) and the degree of filling R0/R of the cylinder be given. If 
such a solution exists, then the half-period can contain two simple sections which, while 
being continuations of one another, are not mirror reflections of each other across the orthog- 
onal axis of the z plane. Each section is the solution of the problem of simple equilibrium 
modes with the angular velocity 9. However, generally speaking, with the "characteristic" 
degree of filling Ri/R and the "characteristic" value of the Weber number ~i = 0~2R~/~ i = 
i, 2. 

Each section is uniquely characterized by its own set of parameters 8i, b i [8 i = D0i/Nli, 
b i = -$i(i + Oi)U~i/8]. When expressed in the initial physical variables, curvature and the 
distance of the free surface from the axis of rotation should be continuous with passage 
through a contact point. The distance of the free surface from the rotation axis will be 
minimal or maximal at such points. 
continuity of the distance 

while in the second case 

In the first case, the below inequality follows from the 

~lllT~l = ~h2R2, (2.9) 

Ol~llR1 = 02~[2-~2- ( 2 .  I0) 

With allowance for these equalities, we can use Eqs. (i.i) and (2.2) to obtain the following 
curvature continuity conditions. For the first case 

l--b (~--0~) _0+%) (2.11) 
1 -  ~ 2 ( 1 - 0 ~ )  ~- (~ + %)' 

w h i l e  f o r  t h e  s e c o n d  c a s e  

342 



s2 

8 

o o,4 Ge e 

CZ 

6 

4 .  

0 

a 

D 

F i g .  2 Fig. i Fig. 3 

l--b(t--0~) =(t+0)0~ (2.12) 
- b~(~-0~)  (t +02)0 / 

With allowance for (2.9), (2.10), we use the definition of the parameters bi, ~i, and 
to obtain relations between the parameters b i and @i in the first case 

b2 = b~(l + 0 2 ) / ( t  + 0 , ) ,  ( 2 . 1 3 )  
while in the second case 

b 2 = b~ (i + 02) 0~/(I + 01) 0.~. ( 2 . 1 4 )  

The given sections of the free surface can be solutions of the problem of simple equilibrium 
modes if the following inequality is satisfied simultaneously [see condition (2.8)] 

b~>--0,5(I+03 -~, ~=t, 2. (2,i5) 
We e x p r e s s  t h e  p a r a m e t e r s  b i t h r o u g h  O i f rom Eqs.  ( 2 . 1 1 )  and ( 2 . 1 3 )  [ ( 2 . 1 2 )  and ( 2 . 1 4 ) ,  r e -  
s p e c t i v e l y ]  and we w r i t e  c o n d i t i o n s  ( 2 . 1 5 )  f o r  them.  As a r e s u l t ,  in  e ach  c a s e  we o b t a i n  a 
s y s t e m  o f  i n e q u a l i t i e s  r e l a t i v e  t o  t h e  p a r a m e t e r s  01 and 02, which  a r e  i n c o n s i s t e n t  when 8 t ,  
0~ e [0 ,  1 ] .  T h i s  p r o v e s  t h e  h y p o t h e s i s .  

3. Instability of Axisymmetric Periodic Equilibrium Configurations. On the basis of the 
analog of the Lagrange theorem and its inverse, the problem of the stability of relative 
equilibrium of a fluid in a vessel rotating at a constant angular velocity reduces [5] to 
determination of the sign of the second variation of the functional U = off i + ~IZi + o01Z01 - 
~2I/2, where IFi, IZl, Iz01 are the area of the free surface and the areas of the surfaces 
of contact of the liquid and gas with the boundary of the vessel; 8 and o0 represent the 

values for surface tension on Z, E0; f----p ] r2dV (r is the distance from the axis of rotation) 
V 

is the moment of inertia of the liquid. 

Let F be a simple equilibrium mode characterized by the parameters O and b, and let 
N(S, a) be the normal component of a perturbation of the free boundary referred to nl. The 
problem of the stability of the surface F reduces [5] to determination of the eigenvalues of 
the following linear boundary-value problem relative to N(S, a): 

i <9 t &v\ i a2N ( 3 . 1 )  
r os[r-5~'J  r 2 a~ ~ + a N @ ~ t = Z N ;  

ON ==0 (S=O) ,  &u ( 3 . 2 )  as ~ = 0  (S=S0; 

s~ ~ (0<~ S <~ S~ ) 
f f ~ v ~ a s d ~ = o  (3.3) 

Here, 

f ~G (T, 0. b) d~ 
s = (l + 0) -V(~ - ~2) (~2 _ 0~) 

0 

i s  t h e  r a t i o  o f  t h e  l e n g t h  o f  an a r c  F, r e c k o n e d  f rom t h e  end z = 0,  
is the value of S at r = i; 

(3.4) 

to the parameter GI; S 

343 



G(T, 0, b ) = t / ~ l + 2 b ( T  2 + 0 ) - b 2 ( l - ~ 2 ) ( z 2 - 0 2 ) .  ( 3 . 5 )  

The function a is determined from the formula ~a = -3H/3n - 4H 2 + 2K [K = Z'Z"(I + 
Z'2) -2 is the Gaussian curvature F, b/bn=n.V n is a unit normal to F, directed inside the 
region occupied by the gas] and is expressed in terms of the parameters 8 and b in the form 

a = --2[4bP+(P/~ -- Q)2 +Q2] (t + 0) -2, ( 3 . 6 )  

P = ~ + O - - b ( t - - ~ ) ( F - - 0 2 ) ,  Q = 1 -  b ( 1 - - 2 ~ + 0 2 ) .  

Conditions (3.2) follow from the assumption that, with disturbance of the equilibrium 
state, the dynamic contact angle at the ends is equal to z/2 - the static contact angle. 
Equation (3.3) expresses the condition of conservation of fluid volume. 

The eigenvalues of problem (3.1)-(3.6) are real. If the lowest eigenvalue ~, is posi- 
tive, then the corresponding equilibrium configuration is stable. If X, is negative, the 
corresponding equilibrium configuration is unstable. If the function N(S, ~) is represented 
in the form of a series 

N = ~ [ ~  (S) cos ms + ~ (S) sin real, 

t h e n  i t  can be shown [5] t h a t  %, = min (%m), where  h I i s  t h e  s m a l l e s t  e i g e n v a l u e  o f  t h e  p rob lem 
~ = 0 , 1  

r dS r'-ds I a+m~,_ ~ + ~ m = O  (O~<S<~S1); ( 3 . 7 )  

d~m aS --0, S=O, Sx ( 3 . 8 )  

when m = 1, w h i l e  X0 i s  t h e  s m a l l e s t  e i g e n v a l u e  o f  p rob lem ( 3 . 7 )  when m = 0. Here ,  we a l s o  
have the condition 

81 

~%rdS = ( 3 . 9 )  O. 
0 

Problems (3.7)-(3.9) were solved by the Galerkin-Ritz method. We used the complete system 
of eigenfunctions Yk(S) introduced in [3]. At m = 0 Yk = Yk - Ik/I0 (k = i, 2 .... ). Here, 

S I SI 

Y~=2S3--3S~S~, Yh=S2(S--S1)< I o =  ~rdS, Ih= yY~rdS. 
0 0 

At m = I, we assume that Yk = Yk" The method of solution was described in [3]. The dif- 
ference between our approach here and [3] is that we allow perturbations leading to displace- 
ment of the center of mass of the liquid layer from the axis of rotation. Numerical calcula- 
tions were performed for simple equilibrium modes with the parameter @ �9 [0, I), b �9 (-0.5 • 
(i + @)-i, 0]. It was found for all of the equilibrium modes that the eigenvalue X0 is posi- 
tive (and equal to 0 only at s > ~, e = i, i.e., at branch points) while Xl is negative. 
This proves the following theorem. 

In a rotating cylindrical vessel with a contact angle equal to ~/2 at the ends, all pos- 
sible axisymmetric equilibrium configurations of the layer are unstable when the distance 
from the axis of rotation changes monotonically with motion along a meridional arc from one 
end to the other. Axisymmetric disturbances are dangerous. 

It follows from this that the rigid-body rotation of a liquid layer with an axisymmetric 
periodic free boundary located on the inside lateral surface of a cylinder of infinite length 
is unstable This conclusion agrees with the result in [2]. In contrast to [2], however, the 
perturbations studied here had the same periods along the z axis as did the equilibrium mode 
that was analyzed for stability. This is evident from condition (3.8), the points S = 0, S l 
corresponding to z = 0, z = s The validity of the next theorem follows from this and the 
fact that the size of each half-period at whose ends conditions (1.2) are satisfied remains 
the same in the case of dangerous axisymmetric perturbations. 

In a rotating cylindrical vessel of finite length with a contact angle of ~/2 at the 
ends, all possible noncylindrical axisymmetric states of relative equilibrium of a viscous 
liquid layer on the inside lateral surface are unstable. In accordance with this theorem, 
when the contact angle is ~/2, all equilibrium configurations with a periodic free surface 
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and a free surface consisting of an odd number of half-periods on whose ends conditions (1.2) 
are satisfied are unstable. Here, the inverse of the Lagrange theorem [9] guarantees an in- 
crease in the mean-square perturbation N(S, ~) during each half-period. If the equilibrium 
surface contains even one half-period that does not contact the ends, then the model chosen 
to describe the behavior of perturbations near the ends is unimportant insofar as deciding 
whether or not this surface will be unstable: either the adhesion model or the slip model 
can be used, and the dependence of the dynamic angle on the velocity of the three-phase 
contact line can be accounted for or ignored. 

The following more general theorem is also valid. As regards the case of a rotating 
cylindrical vessel of relative length Z, if the free surface for the state of rigid-body 
rotation of a meridional section of a fluid layer N(z) contains two stationary points z 0 
and z I for which n'(z 0) = N'(zl) = 0, 0 z z 0 < z I ~ s then this state will be unstable. 

This problem follows from the fact that, within the class of axisymmetric perturbations, 
there are perturbations ~o(S),for which the volume of the liquid within the region z0 ~ z ~ zl, 
remains constant and condition (3.8) is satisfied at the values S = 0, S I corresponding 
to points z0, z I. 

When the contact angles at the ends are not equal to ~/2, a state of rigid-body rota- 
tion of a layer with a free boundary that is periodic along the axis of rotation can exist 
in a rotating cylindrical vessel. For this state to exist, the length of the cylinder must 
be a multiple of the period and the sum of the contact angles at the ends must be equal to 
~. Such a state is unstable, since the meridional section of each period contains two sta- 
tionary points. 

We should emphasize that we did not examine the stability of equilibrium configurations 
of layers in cases in which the complete meridional arc of the free surface contains either 
no stationary points or only one such point between the ends of the rotating cylinder. Such 
equilibrium configurations can be realized at low Weber numbers in a sufficiently short 
cylindrical vessel. Some of these configurations can be expected to be stable. 

Stability can be determined analytically [8] (also see [5], p. 162) for the rigid-body 
rotation of a cylindrical viscous layer in a cylinder of finite length. Among the possible 
perturbations are those for which the value of the functional U remains constant. Regardless 
of the Weber number, U remains constant for perturbations that do not cause the free surface 
to deviate from the cylindrical form but do displace it from the rotation axis. This in- 
dicates that, assuming that the center of mass of the layer may be displaced from thisaxis, 
the equilibrium may be only neutrally stable. If we ignore perturbations which displace the 
center of mass, then the equilibrium state will be unstable (relative to axisymmetric per- 
turbations) at B < $, = (i - ~2/~2) and stable at $ > $,. As was noted in Part 2, the cylin- 
drical state branches at ~ = ~,. The value of $, is equal to unity at s § ~. 

According to the results of our study, simple equilibrium surfaces are unstable at 
0 = 0. Also unstable are the configurations depicted schematically in Fig. 3a and b (i and 2 
denote the regions occupied by the liquid and the gas). This conclusion is consistent with 
the conclusion made in [2] that equilibrium configurations which intersect the rotation axis 
in an infinite cylinder are stable, since perturbations satisfying different boundary con- 
ditions were analyzed in the given case. Contact of a gas bubble with one end of the cylinder 
at just one point is all that is necessary for instability to occur. 
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DEVELOPMENT OF SEPARATION IN THE REGION WHERE A SHOCK INTERACTS WITH 

A TURBULENT BOUNDARY LAYER PERTURBED BY RAREFACTION WAVES 

A. A. Zheltovodov, E. Kh. Shilein, 
and C. C. Horstman* 

UDC 532.526 

The solution of many supersonic gas dynamic problems requires studying how the turbulent 
boundary layer interacts with various perturbations, such as shocks and expansion waves. The 
essential feature of such flows, compared to single interactions, is that upstream perturba- 
tions can cause downstream relaxation effects in the boundary layer. Under such conditions, 
relaxation properties of the flow, in particular its separation resistance, can depend on 
the distance from the perturbation, and also on its type and intensity. 

Current research indicates that the separation properties of a turbulent boundary layer 
in various situations depend significantly on how well its average velocity profile is filled 
out. The behavior is characteristic for the development of a turbulent boundary layer on a 
plate [1-3]. As the Reynolds number increases to Re 6 z l0 s , the velocity profile is observed 
to be less filled out and hence less able to resist separation; while the velocity profile 
becomes more filled out in developed flow and at higher Reynolds numbers, and hence it becomes 
more resistant to separation. Analogous features are noted for perturbed boundary layers in 
which various perturbations fill out the velocity profile. For example, theoretical analysis 
led to the conclusion that separation could be suppressed in accelerated flows [4]. The in- 
crease in the critical intensity of a shock in flows with boundary-layer suction and discharge 
has been recorded experimentally [5]. An analogous effect was observed in a turbulent bound- 
ary layer which had been perturbed by a shock [6]. According to [5], such an effect of fill- 
ing out the velocity profile is explained by the total pressure growth in a characteristic 
wall region of the boundary layer, where its separation properties are determined. At the 
same time, it is obvious that in general the change in the separation properties of perturbed 
boundary layers can be related not only to the transformation of the average velocity pro- 
file but also to a change in the effective viscosity in the wall region. Undoubtedly the 
role of each of these factors should be further refined. The results of the aforementioned 
studies create interest in the experimental study of how a shock interacts with a turbulent 
boundary layer which has been perturbed by expansion waves. This situation is an extreme 
one for testing the use of various turbulence models in current numerical calculations. 

This paper is the result of an experimental and numerical study of how a turbulent bound- 
ary layer interacts with expansion waves and a shock as it flows over wedges. The study is a 
combined effort of the Institute of Theoretical and Applied Mechanics, Siberian Branch, Rus- 
sian Academy of Sciences (ITPM SO RAN) and NASA Ames (USA). The experiments were done at 
ITPM SO RAN under adiabatic surface conditions in the T-313 and T-325 hypersonic wind tunnels 
(cross sections of 0.6 x 0.6 m and 0.2 • 0.2 m in the working section). The models were flat 
wedges of fixed height h = 15 mm (for T-313) and 6 mm (for T-325) with leeward inclination 
angles of $ = 8 ~ , 25 ~ , and 45 ~ . The relatively large width of the models (b/h = 20-26.7) and 
the use of boundary plates eliminated three-dimensional edge effects on the flow character- 
istics near the plane of symmetry. Turbulent flow was developed on the horizontal surface 
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